Definition: Let $a_{i} \in \mathbb{R}$.

$$
a_{1}+a_{2}+\ldots+a_{n}+\ldots=\sum_{k=1}^{\infty} a_{k}
$$

is called an infinite series.

1. a_{i} are called the terms of the series
2. $s_{n}=a_{1}+\ldots+a_{n}$ are called the partial sums of the series

Definition:

If $\exists s$ such that $\lim _{n \rightarrow \infty} s_{n}=s$, then we say that the series is convergent.
If the s_{n} do not tend to a limit, we say that the series is divergent.

Theorem 1. If the series $\sum_{n=1}^{\infty} a_{n}$ converges, then $\lim _{n \rightarrow \infty} a_{n}=0$.

Does the above theorem imply that $\sum_{n=1}^{\infty} \frac{1}{n}$ converges?

Theorem 2. Let $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ be given series and let $c \neq 0$ be a constant. If $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ are convergent series, then $\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right), \sum_{n=1}^{\infty}\left(a_{n}-b_{n}\right)$, and $\sum_{n=1}^{\infty} c a_{n}$ are convergent series. Moreover,

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left(a_{n} \pm b_{n}\right) & =\sum_{n=1}^{\infty} a_{n} \pm \sum_{n=1}^{\infty} b_{n} \\
\sum_{n=1}^{\infty} c a_{n} & =c \sum_{n=1}^{\infty} a_{n}
\end{aligned}
$$

Changing the Order of Summation: The terms of a finite sum can be added in any order without changing the result, since addition is commutative.

$$
a+b+c+d=d+a+c+b
$$

Can we do the same with infinite series?

In general not!

For example $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}}$ converges. However, the rearrangement

$$
1+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{5}}+\frac{1}{\sqrt{7}}-\frac{1}{\sqrt{4}}+\frac{1}{\sqrt{9}}+\frac{1}{\sqrt{11}}-\frac{1}{\sqrt{6}}+\ldots
$$

diverges.
In fact, the terms in the infinite sum can be rearranged to add up to any real number!

Example Find a general expression for the terms of the series.

1. $1+\frac{2}{3}+\frac{4}{9}+\frac{8}{27}+\frac{16}{81}+\ldots$
2. $2+10+50+250+1250+\ldots$
3. $-3+\frac{3}{2}-\frac{3}{4}+\frac{3}{8}-\frac{3}{16}+\ldots$

Geometric Series: A series of the form

$$
a+a r+a r^{2}+a r^{3}+\ldots+a r^{n}+\ldots
$$

is called a geometric series. The number r is the common ratio.

Theorem 3. A geometric series with $a \neq 0$ converges if $|r|<1$ and diverges if $|r| \geq 1$. In the convergent case, we have

$$
\sum_{n=0}^{\infty} a r^{n}=\frac{a}{1-r}
$$

proof: Show that $s_{n-1}=a+a r+\ldots+a r^{n-1}=\frac{a}{1-r}-\frac{a r^{n}}{1-r}$.

